Publications
2025
-
A. W. Mulyadi, L. Wehling, A. Kumar, N. Boucher, F. Abdessalem, S. Jager, M. H. Mosa, T. Klabunde, T. Andreani, G Singh, ``BioMedReasoner: Towards Multi-Hop Reasoning using Path-based Relational Learning on Biomedical Knowledge Graphs”, 2025 NeurIPS Workshop: AI for Science, San Diego, USA, December 2-7, 2025.
-
K. Oh, D.-W. Heo, A. W. Mulyadi, W. Jung, E. Kang, K. H. Lee, H.-I. Suk, “A quantitatively interpretable model for Alzheimer’s disease prediction using deep counterfactuals,” NeuroImage, Vol. 309, 2025.
2024
-
G. Singh, L. Wehling, A. W. Mulyadi*, R. H. Sreenath, T. Klabunde, T. Andreani and D. McCloskey, “Talk2Biomodels and Talk2KnowledgeGraph: AI agent-based application for prediction of patient biomarkers and reasoning over biomedical knowledge graphs”, 2025 ICLR Workshop: Machine Learning for Genomics Explorations, 2025. *) Equally contributed.
-
W. Park, A. W. Mulyadi, E. Kang, and H.-I. Suk, “Prototype-Guided Contrastive Knowledge Graph Representation Learning for Diagnosis Prediction,” International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), Jeju Island, Korea, 2024. (Oral Presentation)
2023
-
A. W. Mulyadi and H.-I. Suk, “Harnessing Personalized Medical Knowledge Graph for Safe Medication Recommendation,” Explainable Artificial Intelligence (XAI) Workshop, Korea Artificial Intelligence Society Korea Computer Science Conference, Jeju Island, South Korea, 2023.
-
A. W. Mulyadi, J. S. Yoon, E. Jeon, W. Ko, and H.-I. Suk, “An Introduction to Neural Networks and Deep Learning,” Deep Learning for Medical Image Analysis, Elsevier, 2023.
-
A. W. Mulyadi and H.-I. Suk, “KindMed: Knowledge-Induced Medicine Prescribing Network for Medication Recommendation,” arXiv preprint, arXiv:2310.14552, 2023.
-
S. Jeong, W. Ko, A. W. Mulyadi, and H.-I. Suk, “Deep Efficient Continuous Manifold Learning for Time Series Modeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
-
A. W. Mulyadi, W. Jung, K. Oh, J.S. Yoon, K.H. Lee and H.-I. Suk, “Estimating Explainable Alzheimer’s Disease Likelihood Map via Clinically-guided Prototype Learning,” NeuroImage, vol. 273, pp. 120073, June, 2023.
2022
-
A. W. Mulyadi, W. Jung, K. Oh, J.S. Yoon, and H.-I. Suk, “Clinically-guided Prototype Learning and Its Use for Explanation in Alzheimer’s Disease Identification,” 2022 NeurIPS Workshop: ‘Medical Imaging meets NeurIPS (MedNeurIPS)’, New Orleans, USA, November 28-December 3, 2022. (Oral Presentation)
-
K. Oh, D.-W. Heo, A. W. Mulyadi, W. Jung, E. Kang, and H.-I. Suk, “Quantifying Explainability of Counterfactual-Guided MRI Feature for Alzheimer’s Disease Prediction,” 2022 NeurIPS Workshop: ‘Medical Imaging meets NeurIPS (MedNeurIPS)’, New Orleans, USA, November 28-December 3, 2022.
-
H.-I. Suk, and A. W. Mulyadi, “Method and Apparatus for Predicting and Explaining Diagnosis of Alzheimer’s Disease,” Korean Patent, No. 10-2022-0143264, November 2022.
-
A. W. Mulyadi, W. Jung, K. Oh, J.S. Yoon, and H.-I. Suk, “Topological-aware Prototype Learning for Estimating Explainable Alzheimer’s Disease Likelihood Map,” Conference of Korea Artificial Intelligence Association (KAIA), Jeju Island, South Korea, 2022.
-
A. W. Mulyadi, W. Jung, K. Oh, J.S. Yoon, and H.-I. Suk, “XADLiME: eXplainable Alzheimer’s Disease Likelihood Map Estimation via Clinically-guided Prototype Learning,” arXiv preprint arXiv:2207.13223, 2022.
-
A. W. Mulyadi, E. Jun and H.-I. Suk, “Uncertainty-Aware Variational-Recurrent Imputation Network for Clinical Time Series,” IEEE Transactions on Cybernetics, vol. 52(9), pp. 9684 - 9694, 2022.
2021
-
W. Ko, W. Jung, E. Jeon, A. W. Mulyadi, and H.-I. Suk, “ENGINE: Enhancing Neuroimaging and Genetic Information by Neural Embedding,” Proc. 21st IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand, December 7-10, 2021.
-
A. W. Mulyadi and H.-I. Suk, “ProtoBrainMaps: Prototypical Brain Maps for Alzheimer’s Disease Progression Modeling,” Medical Imaging with Deep Learning (MIDL) (Short Paper), Lübeck, Germany, 2021.
2020
- E. Jun, A. W. Mulyadi, J. Choi and H.-I. Suk, “Uncertainty-Gated Stochastic Sequential Model for EHR Mortality Prediction,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32(9), pp. 4052 - 4062, 2020.
2019
-
W. Jung, A. W. Mulyadi, and H.-I. Suk, “Unified Modeling of Imputation, Forecasting, and Prediction for AD Progression,” 2019 Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019.
-
E. Jun*, A. W. Mulyadi*, and H.-I. Suk, “Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction,” 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1-7. *) Equally contributed.
2016
- A. W. Mulyadi, C. Machbub, A. S. Prihatmanto, and B.-K. Sin, “Design of Music Learning Assistant Based on Audio Music and Music Score Recognition,” 한국멀티미디어학회논문지, vol. 19, no. 5, pp. 826–836, May 2016.
2015
- A. W. Mulyadi, B.-K. Sin, “Music Learning Assistant Using Audio-Visual Analysis,” 한국정보과학회 2015년 동계학술발표회 논문집, pp. 733 - 734, 2015.